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Abstract

Existing work on Semi-Supervised Learning with
Variational Bayesian Inference and Maximum Un-
certainty Regularization has shown clear improve-
ments in classification errors of various Consis-
tency Regularization based methods. Functional
Space Variational Inference is an improvement to
the Variational Inference. We propose a method
combining Functional Space Variational Inference
and Consistency Regularization by minimizing
the KL divergence of distributions over functions.
We apply our method to the partially labeled
datasets and compare the three ways to realize
our method.

1. Introduction
The availability of large datasets in recent years has fueled
much progress of development of deep neural networks.
Semi-supervised learning (SSL) is a popular framework
as it deals with the more common case where only some
training data is labeled (Van Engelen & Hoos, 2020). Con-
sistency regularization (CR) methods are currently state of
the art methods in approaching this kind of tasks. Examples
include Π-model (Laine & Aila, 2016) and Mean Teacher
(Tarvainen & Valpola, 2017). These ensemble models en-
courage data points in the same neighborhood to share the
same labels, so that they will give the same predictions.
Technically, both use deterministic weights with data pertur-
bation to obtain more robust models by induce randomness
into training data.

Nevertheless, high computational costs and out of sample
errors still haunts these models. Despite much success on
specific datasets, they tend to fail on testing data with differ-
ent structures compared to the training set. An alternative
approach is proposed by (Do et al., 2021), which uses virtual
points to enhance prediction. These virtual points are gener-
ated from the vicinity of real data points that have the most
uncertainty in prediction, and their prediction results are
compared to the prediction of real data points. Consistency

1New York University, New York City, NY, US. .

regularization is performed by minimizing this distance.
This ’maximum uncertainty regularization (MUR)’ model
is innovative in proposing a plausible target for optimiza-
tion. However, the original paper did not incorporate the
likelihood of unlabeled data, which forms the majority of
training data in SSL tasks.

In this paper, we propose an improvement from a function
space perspective. The Bayesian method in this area has
been Variational Bayesian Inference (VBI), which places
priors on these weights and estimates an approximate dis-
tribution by minimizing the KL Divergence. With large
datasets, variational dropout is used to compute efficiently.
Functional Space Variational Inference (FSVI) is an im-
provement to the VBI method (Rudner et al., 2021). In
parameter space, small bias in parameter estimation can
cause large shaking in objective function value. However,
in real-life we care more about final prediction than the
parameters themselves. Therefore, using distributions to
replace the deterministic parameters is very likely to be an
appropriate way. By expressing the posterior distribution
as a distribution over functions, this allows us to impose
more meaningful priors and better control the distribution
over functions induced by the network parameters. By im-
plementing FSVI designs on the deterministic CR models,
we aim to harvest both the gains from ensembling and the
flexibility from FSVI, and see an improvement in prediction.

In Section 2, we introduce the mainstream methods for con-
sistency regularization in SSL networks, which covers the
background of the MUR model we improve upon. Section 3
describes our method of implementing function-space vari-
ational inference on the MUR model, and discusses three
algorithms used in finding the MUR data points. Section
4 outlines the results of our model tested on benchmark
datasets. Section 5 discusses the implications of our model
and next steps to take.

2. Related Work
In this section we cover traditional CR based semi-
supervised methods on parameter space that form the basis
of our approach. The main idea of Consistency Regulariza-
tion is that for an input, even if it is slightly disturbed, its
prediction should be consistent. In related work part, we
mainly introduce three methods — Π Model, Mean Teacher
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Model, and Maximum Uncertainty Regularization.

The first two SSL models both incorporate training stabiliz-
ers based on the notion of CR (Zhang et al., 2019). As a
popular technique in the SSL literature, CR based methods
encourage neighbor samples to share labels by enforcing
consistent predictions for inputs under perturbations (Do
et al., 2021).

2.1. Π Model

Π-model (Laine & Aila, 2016) encourages consistent net-
work output between two realizations of the same input
stimulus, under two different dropout conditions. In other
words, it passes all samples through a classifier twice, each
time with different dropout, noise and image translation
parameters. The core idea for π model is that the dropout
method can be regarded as a method of data perturbation
(DP). Specificallymultiple passes of an individual sample
through the network might lead to different predictions due
to the non-deterministic behavior of dropout method (Saj-
jadi et al., 2016).

During each training iteration a mini-batch of samples is
drawn from the dataset, consisting of both labeled and unla-
beled samples. As we can see from Figure 1(a), we evaluate
the network for each training input xi twice, resulting in
prediction vectors zi and z̃i. The unsupervised consistency
loss is the average of the square difference of the class prob-
ability prediction generated by these two presentations of
each input. The training loss of the Π-model in each itera-
tion is given by the weighted sum of cross-entropy loss on
labeled samples and the consistency loss on both labeled
and unlabeled samples, and the network parameters θ are
updated in the meantime. The final loss of a classifier f
with deterministic weights θ yields:

LΠ(θ) =E(xl,yl)∼Dl
[− log p (yl | xl, θ)] +

λ(t)Ex∼D

[
1

K

K∑
k=1

(p(k | x, θ)− p (k | x′, θsg))
2

]
=Lxent ,l(θ) + λ(t)LΠ,cons (θ, θsg)

where Dl,Du represent disjoint labeled and unlabeled train-
ing datasets; D = Dl ∪ Du;K is the number of classes;
λ(t) is a ”ramp” function which depends on the training
step t; θsg denotes θ with no gradient update; Lxent (θ) is
the cross-entropy loss on labeled samples and LΠ, cons (θ) is
the consistency loss on all samples.

2.2. Mean Teacher Model

The Mean teacher model is based on π model by adding the
idea of temporal ensemble, which simplifies and extends
CR by taking into account the network predictions over mul-

Figure 1. Structure of the training pass in our methods. (a): Π-
model. (b): mean teacher. Labels yi are available only for the
labeled inputs, and the associated cross-entropy loss component is
evaluated only for those.

tiple previous training epochs and encourages subsequent
predictions to be consistent with the average (Laine & Aila,
2016). Mean teacher model uses two networks; a student
network and a teacher network, where the student is trained
using gradient descent and the weights of the teacher are the
exponential moving average of those of the student.

Similar to Π model, the training loss of the mean teacher
model is also the sum of a supervised and an unsupervised
component. In Figure 1(b),zi means student prediction and
z̃i means teacher prediction. The unsupervised consistency
loss is computed using the mean squared difference between
the class probability predictions zi and z̃i for the same input
sample xi. The final loss of a classifier f with deterministic
weights θ yields:

LMT(θ) =E(xl,yl)∼Dl
[− log p (yl | xl, θ)] +

λ(t)Ex∼D

[
1

K

K∑
k=1

(
p(k | x, θ)− p

(
k | x′, θ̄

))2]
=Lxent ,l(θ) + λ(t)LMT, cons (θ, θ̄)

where θ̄ are the exponential moving averages (EMA) of θ
across training steps: θ̄t = αθ̄t−1 + (1− α)θ(α ∈ [0, 1])

The structure of the Π model and the mean teacher model is
shown in Figure 1.

2.3. Maximum Uncertainty Regularization

In the previous two SSL models, the DP of the model is
based on the dropout method. However, standard DP meth-
ods (e.g., Gaussian noise, dropout) often generate perturba-
tions in the vicinity of each data point and ignore those in the
vacancy among data points, which means consistency losses
equipped with standard DPs can only train locally smooth
classifiers that do not generalize well in general. In order to
make the model have better generalization ability, a new loss
method is proposed, called Maximum Uncertainty Regular-
ization (MUR). They start by assuming a series of ’virtual’
points x∗, which are located near the real data points with
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the highest uncertainty and then make the results predicted
by the model for the virtual points are the same as the values
predicted by the real data points x0. In this way, they can
learn a smoother classifier that generalizes better (Do et al.,
2021). In addition, Shannon entropy can be used to measure
uncertainty. So, the virtual point x∗ can be found using:

x∗ = argmaxH(p(y|x)), s.t.|x− x0| ≤ r

which r is the largest distance between x0 and x∗. The
choice of r can affect the performance of the model. If r is
too small, it is hard to find an adequate virtual point that
the classifier is uncertain about. By contrast, if r is too big,
virtual point is very different from real point and forcing
consistency between these points may be inappropriate. In
terms of model performance, researches have shown that
when using the MUR method as a data perturbation method,
the model performance has been significantly improved.

In general, it is hard to compute x∗, because the previous
equation has lots of local minimum points. However, we
can approximate x∗ by optimizing a linear approximation
of H(p(y|x)) instead. In this case, the original question can
covert to solve:

x∗ ≈ x0 + r
g0
|g0|2

which g0 is the gradient of H(p(y|x)) at x = x0.

MUR method is similar to Adversarial Learning (AL)
(Szegedy et al., 2013). However, there are still some dif-
ferences between the two: In MUR, the two sub-problems
optimize two distinct objectives (the consistency loss and
the conditional entropy) while in AL, the two sub-problems
share the same objective. Moreover, since MUR’s objec-
tives do not use label information, MUR is applicable to
SSL while AL is not.

By reading related research, we found that the current explo-
ration of MUR methods is not mature enough. In addition,
current research still stays in the parameter space. In our
project, we propose some new methods for detecting virtual
points, and compare the model performance between differ-
ent methods, and we hope to examine the SSL model from
the function space.

3. Method
Our model builds upon the Function-Space Variational Infer-
ence, which we will describe. Subsequently we will present
our modifications that enable function-space MUR.

3.1. Function-Space Variational Inference

All the above-mentioned CR approaches are based on pa-
rameter space. However, as mentioned in 1, they all share

the problems of defining meaningful priors, so now some
research has gradually turned to the function space to fit the
data. For functional space variational inference, (Sun et al.,
2019) consider a variational objective defined explicitly in
terms of distributions over functions induced by distribu-
tions over parameters.

Considering supervised learning tasks on data D .
=

{(xn,yn)}Nn=1 = (XD,yD):

On traditional parameter space, we have

• likelihood function py|(X;Θ),

• prior pΘ (θ),

• posterior pΘ|D (θ | D).

On functional space,

• letting py|f(X;Θ) be a likelihood function, and
py|f(X;Θ) (yD | f (XD;θ)) be the likelihood of ob-
serving the targets yD under the stochastic function
f(·;Θ) evaluated at inputs XD.

• The prior distribution over functions pf(·;Θ)(f(·;θ))
induced by a prior distribution over parameters pΘ is
defined as:∫
RP pΘ

(
θ′) δ (f(·;θ)− f

(
·;θ′)) dθ′

• The posterior distribution over functions
pf(·;Θ)|D(f(·;θ) | D) is defined as:∫
RP pΘ|D

(
θ′ | D

)
δ
(
f(·;θ)− f

(
·;θ′)) dθ′

where δ(f(·)) is the Dirac delta function.

Like the inference of the parameter space, we need to judge
the distribution of p(f(x)|D) but introduce another sim-
ple distribution q(f(x)) when determining the distribution
of p(f(x)|D), so that q(f(x)) is as close as possible to
p(f(x)|D). Specifically, we need to maximize functional
ELBO (fELBO) (Sun et al., 2019). fELBO is defined as:

F (qΘ)

= Eqf(XD ;Θ)

[
log py|f(X;Θ) (yD | f (XD;θ))

]
− DKL

(
qf(·;Θ)∥pf(·;Θ)

)
To make our object tractable, (Sun et al., 2019) proposed
a simple estimator of the Kullback-Leibler divergence be-
tween distributions over functions that allows for stochastic
variational inference:

DKL

(
qf(·;Θ)∥pf(·;Θ)

)
can be expressed as the supremum of

the KL divergence from qf(·;Θ) to pf(·;Θ) over all finite sets
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of evaluation points supX∈XN
DKL (qf (X;Θ)∥pf (X;Θ)),

where XN
.
=

⋃
n∈N

{
X ∈ Xn||Xn ⊆ Rn×D

}
is the collec-

tion of all finite sets of evaluation points.

In addition to this, (Rudner et al., 2021) used local lineariza-
tion to allow for scalable gradient-based optimization of
F (qΘ). Then, an estimator of variational objective is ob-
tained by using the Monte Carlo estimator over the induced
distributions under the linearized mapping.

Functional Space variational inference method leads to state-
of-the-art uncertainty estimation and predictive performance
on a range of prediction tasks (Rudner et al., 2021)

3.2. Function-Space MUR

In order to improve the generalization ability of our model.
We often need data perturbation methods to train models.
We find ’virtual’ points, while here they are unlabeled points.
These “virtual” points usually lie beyond the local area of
real data points and prevent a smooth transition of the class
prediction from a data point to another. We hope that the
predicted value obtained by these virtual points is the same
as the predicted value of the real data point, which can
improve the generalization ability of the model. Specifically,
we use the hope to get:

softmax(q(f(x∗))) = softmax(p(f(x0)))

Where x∗ is defined as the:

x∗ = argmax
x

H(p(y | x)) s.t. ∥x− x0∥2 ≤ r

And q(f(x)) and p(f(x)) is the probability distribution for
x∗’s function and x0’s function on function space. We also
want the two distributions to be closed with each other,
specifically, We need the q distribution to gradually ap-
proach the p distribution, and we use the KL divergence
DKL (q(f(x))∥p(f(x)) to define this difference.

For experiments that involve uncertainty quantification, we
have to choose a prior distribution over parameters that in-
duces a prior distribution over functions pf(·;Θ). There exist
some ideas about how to choose the prior distribution. First,
we choose the Gaussian distribution as the prior distribution,
but we have different considerations for the Gaussian mean.
First, we can calculate the mean, i.e. f(x0), from the exist-
ing data. Another mean is to use mean of f(x∗). We will
also continue to explore the possibility of Gaussian distribu-
tion priors, and try to change the parameters to better fit our
data, and try to get the relationship between the definition of
the prior distribution and our results. Previous studies also
use prior to mimic GP prior distribution (Flam-Shepherd
et al., 2017) or using Noise Contrastive Priors (Hafner et al.,
2018). For the sake of time limit, we do not consider them
in this study.

3.3. Most Uncertain Unlabeled Data Selection

We assume the prior p(f(.)) as a Gaussian distribution of
mean µp and covariance Σp. With this assumption, the
KL divergence DKL (q(f(x))∥p(f(x)) becomes a KL Di-
vergence between 2 gaussians p(f(.)) ∼ N (µp,Σp) and
qθ(f(.)) ∼ N (µqθ,Σqθ) which simplifies as an affine func-
tion of ∥µqθ − µp∥2

DKL (q(f(x))∥p(f(x)−) = Cst1 + Cst2 ∗ ||µqθ − µp||2

With Cst1 and Cst2 function of the other parameters of the
gaussians

This shows that optimizing the KL Divergence will mini-
mize the difference ∥µqθ − µp∥2 and with a smart choice of
µp, we can try to imitate the behaviour of the MUR Loss.

Choosing µp as x∗ is an approximated way to make the
KL Divergence of the Function Space Loss behave like the
MUR Loss in parameter space. The method now relies in
the choice of computation of this x∗

3.3.1. GREEDY COMPUTATION

A natural way to find x∗ is to greedily search for it in the
unlabeled dataset. For each data x, we look through each
unlabeled data and compute their entropy until we find the
most uncertain one in a close area.

Algorithm 1 Greedy x* search
Dnl ← Non labeled Dataset
x← labeled data point
Hmax ← −∞
x∗ ← None
for xnl ∈ Dnl to do beginf(xnl) ← model(xnl)

H ← Compute Entropy(f(xnl))
if H ≥ Hmax then

Hmax ← H
x∗ ← xnl

end if
return x∗

In practice the greedy algorithm is very slow but accurate.
If the hardware is optimized, it is preferred to opt for the
greedy algorithm. Details about the algorithm’s usability is
discussed in the Experimental result section.

3.3.2. 1ST-ORDER APPROXIMATION

Since we define x∗ with an argmax of the entropy function,
a natural approximation is to follow the first order expansion
of the entropy (Huber et al., 2008) around the data point
we consider. This approximation is the one followed by



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Bayesian Semi Supervised Learning with Function-Space Variational Inference

the original paper. While not accurate for more complex
problems, it leverages a very fast computation compared to
the workload of a greedy search

x∗ = x+ λ
∇f(x)
||∇f(x)||

With λ < r an hyperparameter

Algorithm 2 1st-Order Approximation
x← labeled data point
f(x)← model(x)
∇f(x)← computegradentropy(f(x))

x∗ ← x+ λ ∇f(x)
||∇f(x)||

return x∗

In this method, we need to determine the size of the r value,
we first choose r = 7, because according to the previous
research when using r = 7, the error of the model result
is the smallest (Do et al., 2021). In addition, we want to
compare the model performance when we choose different
value of r, specifically, we choose the r = 4, 7, 10, 20, 40.

3.3.3. K-NN APPROXIMATION

Using a k-nearest neighbors (K-NN) approach (Guo et al.,
2003), we can balance between the accuracy/efficiency of
a greedy approach and the computational speed of the 1st-
order approximation.

Using a specific data structure such as a KDTree (Moore,
1991) from the sklearn library, we can store the K nearest
neighbour for each of the data point of the dataset.Therefore,
we can approximate x∗ by comparing the entropy of these
K neighbours only.

The K parameter of the algorithm can be tuned to balance
between accuracy and speed. With K lim size(D, we get
back the greedy search algorithm

Algorithm 3 K-NN Approximation
x← labeled data point
f(x)← model(x)
D← Dataset
T ← buildKDTree(D)
Hmax ← −∞
x∗ ← None
for x’ ∈ T (x).children to do beginf(x′) ←
model(x′)

H ← Compute Entropy(f(x′))
if H ≥ Hmax then

Hmax ← H
x∗ ← x′

end if
return x∗

4. Experiments
Our implementation was developed from a template using
Pytorch and JAX. We then translated everything in Pytorch.
Because the translation takes a while we first experiment
with the template code and then the fully pytorch code.

Details about the datasets, data preprocessing scheme, the
classifier’s architecture and settings, and the training hyper-
parameters are all the same than the original paper. The
objective of the experiment is to find priors that would be-
have the same way the MUR loss behaves and compare the
three uncertain data selection methods.

4.1. Experiment Datasets

We evaluate our approaches on two standard benchmark
datasets: SVHN and CIFAR-10.

4.1.1. SVHN

SVHN is a real-world image dataset for developing machine
learning and object recognition algorithms with minimal
requirement on data preprocessing and formatting. It can
be seen as similar in flavor to MNIST (e.g., the images
are of small cropped digits), but incorporates an order of
magnitude more labeled data (over 600,000 digit images)
and comes from a significantly harder, unsolved, real world
problem (recognizing digits and numbers in natural scene
images). SVHN is obtained from house numbers in Google
Street View images.

The dataset contains 10 classes, 1 for each digit. There
are 73,257 digits for training, 26,032 digits for testing, and
531,131 additional, somewhat less difficult samples, to use
as extra training data.The cropped images are centered in
the digit of interest, but nearby digits and other distractors
are kept in the image. For the purpose of these experiments,
we will use the 32x32 image format since it is easier to deal
than the original format

4.1.2. CIFAR-10

The CIFAR-10 dataset is a set of labeled images used for
object recognition. It consists of 60,000 32x32 color images
in 10 classes, with 6,000 images per class. The 10 classes are
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. The dataset is split into 50,000 training images
and 10,000 test images. It was developed by the Canadian
Institute for Advanced Research (CIFAR). It is widely used
for machine learning and computer vision applications.

The CIFAR-10 dataset is a great choice for object recogni-
tion tasks as it is relatively small, yet contains a diverse set of
images. The images also have a uniform size, which makes
it easier to work with and process. The CIFAR-10 dataset is
one of the most widely used datasets in the world and for
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Greedy 1st-Order K-NN

Accuracy 25% epochs 38 ± 5.3 45 ± 5.5 44 ± 3.5
Accuracy 50% epochs 53 ± 2.3 59 ± 4.7 60 ± 2.0
Accuracy 75% epochs 57 ± 2.2 58 ± 5.0 61 ± 1.5

Accuracy 100% epochs 57 ± 2.1 58 ± 5.0 61 ± 1.5

Table 1. Accuracy (%) over epochs for all 3 methods. Measured
on 5 different runs

this reason can be considered as a reasonable benchmark
for the experiments.

4.2. Evaluation Measures

We would like to compare the classification errors of each
method on SVHN and CIFAR-10. Each setting of our mod-
els would be run 5 times.

For the kNN model, we fixed the ”k” to be 8.

4.3. Experiment Results

In Table 1, we report the accuracies over epochs of the dif-
ferent x∗ approximation methods. We observe that contrary
to our prior belief, greedy algorithm is not doing the best
performance even though it gives the most accurate x∗ since
it sweeps all over the data one by one. The finding is sup-
ported by previous studies (Wilt & Ruml, 2014). K-NN
gives better results with higher accuracy and lower variance
compared to both other methods. The 1st-Order approxi-
mation seems to approach the greedy performance but with
much higher variance.

It is important to note that out of all different runs, the
1st-Order achieved both best and worst accuracy, denoting
its very high variance in performance. K-NN seems the
most reliable methods of all three in both performance and
computational speed if built with the proper data structures.

Figure 2 shows different images given the approximation
methods. We can observe that for the same input image,
very different x∗ are chosen by each. In our human percep-
tion, greedy algorithms seems to give the most reasonable
”closest” image in the sense of minimizing the Euclidian dis-
tance of the images. On the other hand, the 1-st order gives
completely unrelated picture, in both shape, label and color.
Since the approximation doesn’t return a direct image of the
unlabeled dataset, we had to project the approximation on
the dataset just for the sake of this figure comparison. K-
NN however also seems to give a reasonable ”close” image,
retaining the same label, shape and more or less the same
color distribution.

In the end, we can observe from the experiments that even
though sometimes the 1st-Order doesn’t seem to find mean-
ingful images, it still achieves performance relatable to the

Figure 2. Different x∗ approximation for different methods given
one input image

greedy algorithm. The K-NN algorithm however seems to
be a good balance between the brute-force performance of
the greedy algorithm and the computational speed of the
1st-Order approximation.

5. Discussion
We have proposed an effective approach to function-space
variational inference in SSLs. It innovatively incorporated
FSVI in MUR and applied on real-life datasets with three
different realization methods.

To further elaborate this study, we will implement 5 addi-
tional runs of the experiment to achieve a more stable and
accurate result; Currently we used a fixed ”k” value for our
kNN method, in the future we plan to treat ”k” as a hyper-
parameter and fine-tune the ”k” in each set of experiment;
Also, although we mentioned SVHN dataset in our presen-
tation, we did no have enough time to run experiments on
it. Should time allows, we hope to have a try on SVHN and
see if it validates our current conclusion; In addition, we
also plan to change the value of r, but due to the increase
in the amount of calculation, we cannot get the model per-
formance of different r values in time, but we think that the
results obtained by changing the value of r should be similar
to the results obtained in previous studies . Finally, we used
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ResNet architecture in our Python program but we would
like to try smaller neural network architecture in the future.
It would be exciting to see if there is a smaller NN taking
shorter time to run but still yielding good accuracy.

For SSL, current models in parameter space have developed
rapidly. We covered the π model and mean teacher model
in detail. Both of these approaches focus on adding noise
to the data to improve model smoothness for better model
performance. In addition, some current methods can also
optimize the model from the perspective of data training.
For example, the method of Virtual Adversarial Training
(VAT) is to selectively pick noise for training by finding
the weak points of the model network (Miyato et al., 2018).
In addition, the idea of Interpolation Consistency Training
(ICT) is to assume that if two points are similar, the output
corresponding to any point between the two points should
also be similar (Verma et al., 2019). This method can ef-
fectively reduce the calculation amount of the model. In
addition, we have some Proxy-label Methods (Shen et al.,
2019), including self-training. That means that given a data
set, use the labeled data to train the network, and then let
the network predict the unlabeled data, take the most confi-
dent data and prediction, integrate with the original labeled
data as a new training set, and then train the network, and
repeat this. These methods can be well combined with cur-
rent data perturbation methods and further improve model
performance. Our method is the first to investigate semi-
supervised learning in function space, so our method does
not integrate some other methods of model optimization.
We think that in the future, we can gradually combine the
optimization method of this model with our regularization
method in the function space to further improve the ability
of the model.

In our paper, we did not compare our model with previous
results of MUR in parameter space. We cannot guarantee
that models in function space can outperform models in
parameter space, but previous research has also shown that
function space has performed well in neural networks (Rud-
ner et al., 2020; Sun et al., 2019). However, SSL is different
from the previous tasks. We will prepare to use the param-
eter space model (mean teacher model or MUR model) to
train and compare the accuracy with our model.

We admit that, due to time limitation, we did not fully opti-
mize our model, but the existed results already have good
indications. We hope that this work will lead to further
research on function-space variational inference and devel-
opment of more appropriate data-driven prior distributions
on functions.
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A. Progress since midway report
We researched on consistency regularization theory and developed function-space variational inference code before midway
report.

Since midway report, we figured out how to incorporate function-space variational inference in Maximum Uncertainty
Regularization and proposed a doable prior searching approach with gaussian assumptions. We found three methods to find
the Maximum Uncertainty point and implemented experiments to visualize their performance.


